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INVESTIGATION OF VERY LOW BLOCKAGE RATIO BOATTAIL MODELS
IN THE LANGLEY 16-FOOT TRANSONIC TUNNEL

David E. Reubush
Langley Research Center

SUMMARY

An investigation at an angle of attack of 0° has been conducted in the Langley 16-foot
transonic tunnel at Mach numbers from 0.4 to 1.05 to determine the limits in Mach num-
ber at which valid boattail pressure drag data may be obtained with very low blockage
(0.0027) ratio bodies. The results of this investigation indicate that extreme care must
be exercised when examining any data taken at subsonic Mach numbers very near 1.0
(e.g., above M = 0.96) and lower than the supersonic Mach number at which shock reflec-
tions miss the model. Boattail pressure coefficient distributions will generally not indi-
cate any error, but when integrated boattail pressure drag data are plotted as a function
of Mach number, data which may be in error can generally be identified.

INTRODUCTION

Even with slotted or porous wall wind tunnels, the difficulties in obtaining valid wind-
tunnel data near a Mach number of 1.0 have long been known. At Mach numbers very
slightly less than 1.0, although the models used may have relatively small blockage,
regions of sonic flow will extend to the wind-tunnel walls. The shape of the sonic regions
is changed by the interaction with the walls and the resulting data are then in error. At
Mach numbers slightly greater than 1.0, the model bow shock is reflected back from the
walls and impinges on the model, again resulting in invalid data. An investigation was
recently conducted in the Langley 0.3-meter transonic cryogenic tunnel to determine the
effects of Reynolds number on boattail pressure drag (ref. 1). In order to accomplish the
objectives of this investigation, six small models (2.54 cm in diameter) with extensive
boattail pressure instrumentation were constructed. With these small models available,
an investigation was then initiated in the Langley 16-foot transonic tunnel to determine the
practical testing limit for Mach number (near 1.0) at which valid boattail pressure data
could be obtained since the models would have an extremely low blockage ratio (ratio of
model cross-sectional area to tunnel test section cross-sectional area) in this facility.

In addition, a facility-to-facility comparison between the 0.3-meter transonic cryogenic



tunnel and the 16-foot transonic tunnel could be made. Also, two of the small models
were scale models of two large models which had been previously tested in the 16-foot
transonic tunnel (refs. 2 and 3), and an additional data comparison of the effect of model
size in the same facility would be possible.

The current investigation used the series of six isolated, sting-mounted, cone-
cylinder nacelle models with four different boattail geometries (ref. 1). These models
were tested in the Langley 16-foot transonic tunnel at 0° angle of attack at Mach numbers
from about 0.4 to 1.05. Reynolds number based on the distance from the nose of the
model to the start of the boattail varied from about 1.7 x 106 at M = 0.4 to 2.9 x 106 at
M = 1.05 for four of the models and from about 3.4 x 106 at M = 0.4 to 5.7 x 106 at
M = 1.05 for the other two models,

SYMBOLS
A cross-sectional area
An maximum cross-sectional area of model
A 8 incremental cross-sectional area assigned to boattail static-pressure
orifice for drag integration
CD, g boattail pressure drag coefficient (see Data Reduction section)
Cp static-pressure coefficient, P~ Pe
dy maximum diameter of model
dg sting diameter
L length of model from nose to start of boattail (characteristic length)
l length of boattail
M free-stream Mach number
p local static pressure on model
P free-stream static pressure
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q free-stream dynamic pressure

R Reynolds number (based on length from nose to start of boattail)

X axial distance from start of boattail, positi\{e aft

y radial distance from center line of model

0] meridian angle about model axis, clockwise positive facing upstream,

0° at top of model
APPARATUS AND PROCEDURE

Wind Tunnel

This investigation was conducted in the Langley 16-foot transonic tunnel, which is
a single-return, continuous-flow, atmospheric tunnel. The test section is a regular octa-
gon in cross section with slots at the corners of the octagon. The tunnel speed can be
varied continuously from a Mach number of 0.20 to 1.30. Further description of the
Langley 16-foot transonic tunnel can be found in references 4 to 6.

Models and Support System

A generalized sketch of the boattailed cone-cylinder nacelle models used in this
investigation is shown in figure 1. Figure 2 is a photograph of all six models. There
were four short models of differing boattail geometry with a length of 20.32 cm from the
nose to the start of the boattail (characteristic length); there were two long models with a
length from the nose to the start of the boattail of 40.64 cm. The boattail geometry of the
two long models duplicated the boattail geometry of two of the short models. Details of
the geometry of the four boattails are shown in figure 3. The four boattail geometries
were a circular arc with a ratio of length to maximum diameter or fineness ratio Z/drn
of 0.8 (both short and long models), circular arc with a fineness ratio of 1.77, circular-
arc—conic with a fineness ratio of 0.96 (both short and long models), and contoured with
a fineness ratio of 0.95. The two circular-arc boattails are scale models of two boattails
which have been tested in the Langley 16-foot transonic tunnel (refs. 2 and 3).

The models were all sting mounted with the sting simulating the geometry of a jet
exhaust plume for a nozzle operating at its design point. (See ref. 3.) The two circular-
arc boattails and the circular-arc—conic boattail had ratios of sting diameter to maxi-
mum diameter of 0.50, whereas the contoured nozzle had a ratio of sting diameter to
maximum diameter of 0.544. The length of the constant-diameter portiofl of the stings



was such that, based on the data contained in reference 7, there should be no effect of the
tunnel support sting flare on the boattail pressure coefficients. In addition, the sum of
the boattail and sting lengths (before the flare) was constant so that the noses of all four
of the short models were at the same tunnel station. The noses of the two long models
were at the same tunnel station, but this station was not the same as that for the short
models. (The start of the boattail was at the same tunnel station for all six models.)

The models were constructed of cast aluminum with stainless-steel pressure tubes
cast as an integral part of each model. The tubes were placed in the sand mold in the
proper position, the aluminum was poured, and the model was machined to the proper

contours.

Figure 4 shows photographs of a typical short model and a typical long model
mounted in the Langley 16-foot transonic tunnel. The models had a maximum diameter
of 2.54 cm and a resulting tunnel blockage of 0.0027 percent.

Instrumentation and Tests

The six boattails were instrumented with 30 static-pressure orifices in 3 rows of
10 orifices each (¢ = 0°, 120°, and 240°) at the locations given in table I. These orifices
were connected to remotely located 34.47 kPa (5 psi) pressure gages which had an accu-

racy of +0.5 percent of full scale.

All tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers
from 0.40 to 1.05 at an angle of attack of 0°. Model attitude was set to account for tunnel
upflow (about 0.1° through the Mach number range), but no account was taken of possible
sting deflection because it was believed to be insignificant. Boundary-layer transition
was natural for all tests to insure a direct comparison with the data from reference 1.

DATA REDUCTION

Model and wind-tunnel data were recorded on magnetic tape and a digital computer
was used to compute standard force and pressure coefficients. Pressure drag coefficients
were computed from the measured pressures on each boattail. These coefficients, based
on the maximum cross-sectional area of the model, were obtained from the pressure data
on the boattail portion of the model by assigning an axially projected area to each orifice
and computing the coefficients from the following equation:

Cp,g= qu Z (P -



Accuracy of this step integration scheme was spot-checked by plotting the pressure coef-
ficients as a function of A /Am and integrating with a planimeter.

DISCUSSION

Boattail Pressure Coefficient Distributions

Boattail pressure coefficient distributions for the six models at the various Mach
numbers tested are shown in figures 5 to 10. The significant point to be made about these
data is that, even though the data obtained above M = 1.0 will later be shown to be in
error and some data obtained just below M = 1.0 (e.g., above M = 0.96) becomes
qguestionable when the integrated boattail pressure drag coefficients are examined, it is
impossible to ascertain such errors by looking only at the boattail pressure coefficient
distributions. Figure 11 shows typical examples of boattail pressure coefficient distri-
butions for two of the boattails at the Mach numbers tested between about 0.9 and 1.0.
(Both the actual data and a fairing through the data are shown since both the ¢ = 0° and
¢ = 120° rows of pressures are included in the distributions.) Even when boattail pres-
sure coefficient distributions at successive Mach numbers are plotted, the changes in dis-
tributions due to the rearward shock movement with Mach number seem reasonable and
no error can readily be ascertained.

Boattail Pressure Drag Coefficients

Boattail pressure drag coefficients as a function of Mach number for the six config-
urations are shown in figure 12. When these curves are examined, it is immediately
apparent that the data above M = 1.0 are in error. The integrated drag coefficients are
not in a smooth curve with Mach number and appear to be shifting up and down slightly.
At Mach numbers below 1.0, there is also some question as to the validity of the data for
tests above M = 0.96. At about M = 0.98, the data depart from a smoothly faired curve
for all six configurations, and although the data above M = 0.98 may generally be faired
into a continuation of the lower Mach number curve, this phenomenon leads one to believe
that these data at M = 0.98 and above are possibly in error. This indication that the
onset of transonic wall interference occurs at a Mach number of 0.96 agrees with the
results found in reference 8, which are also for low blockage ratio bodies.

It is believed that the phenomenon above M = 1.0 is due to the reflected bow shock
impinging on the model and would be expected to clear up once a supersonic Mach number
is reached at which the reflected shock misses the model. It has been suggested that the
phenomenon below M = 1.0 is due to a sonic region on the model extending to the wall
and its shape being changed through interaction with the wall, but available analytic pro-
cedures (e.g., ref. 9) indicate that the sonic region reaches the wall only at Mach numbers
greater than 0.99 (for this geometry and blockage ratio).



Comparison of Data

Boattail pressure coefficient distributions.- Boattail pressure coefficient distribu-
tions for the L/dy = 16.0, 1/d,, =0.80 circular-arc boattail, the L/dp, = 8.0 and 16.0,
L/dy, =0.96 circular-arc—conic boattails, and the L/dp, = 8.0, /dpy = 0.95 con-
toured boattail obtained in both the Langley 16-foot transonic tunnel (blockage about
0.0027 percent) and the Langley 0.3-meter transonic cryogenic tunnel (ref. 1, blockage
about 0.52 percent) are shown in figures 13 to 16 for M = 0.6 and 0.9. The other two
configurations (L/dm = 8.0, l/dm = 0.80 and 1.77 circular-arc boattails) were not tested
at a Reynolds number in the cryogenic tunnel low enough to be sufficiently close tc the
16-foot transonic tunnel Reynolds number for a valid comparison. It was shown in refer-
ence 1 that although integrated boattail pressure drag coefficients are not sensitive to
Reynolds number, the boattail pressure coefficient distributions are sensitive to Reynolds
number, and thus while comparisons of pressure drag coefficients are valid at different
Reynolds numbers, comparisons of pressure coefficient distributions are not. For those
four configurations for which comparisons can be made, only a general trend can be
ascertained. The boattail pressure coefficient distributions are generally in reasonable
agreement between the two tunnels with the M = 0.9 data being in slightly better agree-
ment than the M = 0.6 data.

Boattail pressure drag y coefficients in the Langley 16-foot transonic tunnel and the
Langley 0.3-meter transonic cryogenic tunnel.- Boattail pressure drag coefficients for
the data from both the 16-foot tunnel (blockage about 0.0027 percent) and the cryogenic
tunnel (ref. 1, blockage about 0.52 percent) and for the large model data from the 16-foot
tunnel (ref. 3, blockage of model and support about 0.15 percent) are shown in figure 17,
For all six small models, the boattail pressure drag coefficients obtained in both the
16-foot tunnel and the cryogenic tunnel agree quite well at Mach numbers of 0.8 and above.
However, the drag levels for the models in the cryogenic tunnel are always lower than
those for the models in the 16-foot tunnel at M = 0.6 since the pressure coefficients are
slightly higher for the cryogenic tunnel than for the 16-foot tunnel at M = 0.6. The rea-
son for such a difference between the drag levels is not clear, but possibly may be due to
the fact that the cryogenic tunnel has wider slots than the 16-foot tunnel and hence a
greater open area. It is not believed that the difference in blockage causes the difference
in drag levels because the Mach number is low and the data agree at the higher Mach

numbers.

Boattail pressure drag coefficients for two model sizes in the Langley 16-foot
transonic tunnel.- For both the large (réfs. 2 and 3) and small versions of the two
circular-arc boattails (L/drn = 8.0, Z/dm = 0.8 and 1.77) which were tested in the 16-foot
tunnel, the results are not the same. The drag coefficients for the Z/dm = 1.77 circular-
arc boattail which has attached flow at most Mach numbers agree extremely well, whereas




the drag level of the large 1 /dm = 0.80 circular-arc boattail which has separated flow
over the rear portion of the boattail (as indicated by the flattening out of the pressure
distribution to a constant level) at all Mach numbers tested is somewhat higher than that
of the small model. It is believed that this discrepancy for the Z/dm = 0.80 boattail
occurs because boundary-layer transition was fixed at the nose for the large models while
it was natural for the small models. The resulting differences in the boundary layer
approaching the boattails for the two different size models resulted in changes in the
boattail pressure coefficient distribution for the l/dm = 0.80 boattail with separated
flow, while not for the l/dm = 1.77 boattail with attached flow. The sensitivity of the
separated-flow boattail to changes in approach boundary layer is not unexpected. Note
that for the two large models the drag data above M =0.96 are in error and exhibit a
tendency to drop off as M = 1.0 is approached. For this blockage ratio in the 16-foot
tunnel (0.15 percent), the data in error are easier to detect than for the small blockage
ratio models since the effects are larger. '

CONCLUSIONS

An investigation at an angle of attack of 0° has been conducted in the Langley 16-foot
transonic tunnel at Mach numbers from about 0.4 to 1.05 to determine the limits in Mach
number at which valid boattail pressure drag data may be obtained for very low blockage
(0.0027 percent) ratio bodies.

First, it was found that extreme care must be exercised when examining any boat-
tail pressure data taken at subsonic Mach numbers greater than about 0.96 and lower than
the supersonic Mach number at which shock reflections miss the model. Boattail pres-
sure coefficient distributions will generally not indicate any error, but when integrated
boattail pressure drag data are plotted as a function of Mach number, data which may be
in error can generally be identified.

Second, comparisons between boattail pressure drag data obtained using both small
and large models in the Langley 16-foot transonic tunnel and the data obtained for the
small models tested in the Langley 0.3-meter transonic cryogenic tunnel were generally
very good.

Langley Research Center

National Aeronautics and Space Administration
Hampton, VA 23665

September 30, 1976
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TABLE I.- BOATTAIL STATIC-PRESSURE ORIFICE LOCATIONS

Boattail
configuration

Circular-arc;
< _o0s8
m

Circular-arc;

Lo
dm

Circular-arc—conic;

l
— =10.96
dm
Contoured;
l
— =0.95
dm

H

X

dm
¢=0°
-0.2771
-.0256
0770
.1765
2750
.3679
.4675
.5749
.6698
1746

-0.3006

-.0086
.3515
.6314
.8271
.9975
.1500
2716
.4144
.5447

e

-0.2842
.0001
.1090
.1917
.3000
.4027
.5022
.5991
.6948
.8036

-0.2951
-.0084
.0925
.1930
.2861
.3759
.4786
5797
.6840
.71909

L

for = =

dm
¢ = 120°

-0.2761
-.0731
.0256
.1287
.2257
.3240
.4180
.5166
.6165
.7280

-0.3028
.2554
.5057
.71364
.8091

.0652

.2075

.3581

.4817

6202

e e

-0.2843
-.0352
.0640
.1577
.2542
.3528
.4499
.5518
.6522
.8488

-0.2950
-.0500
.0500
.1485
.2433
.3449
.4417
.5404
.6415
.8425

8 at —

— e

-0.
.1088
.0113
.3543
.5072
.8204
.9910
.3528
.4846
.6936

-0.
.0059
.1044
.2069
.3031
.4453
.5483
.6516
.7494
.9069

.3011
.0021
.0934
.1976
.2913
.4350
.5355
.6335
1366
.8951

& = 240°
-0.

2850
0700

.0345
.1270
.2260
.3279
.4200
.5220
.6376
.1400

3090

2847

X for L.-16 at -

dm
¢ =0°
-0.4491
-.1637
-.0600

.0337
.1268
2279
.3210
.4199
.5231
.6279

-0.2612
.0228
1227
.2158
.3107
.4148
.5097
.5967
.7068
.8188

m

¢ =120° | ¢ =240°
-0.4660 -0.4561
-.2201 -.1552
-.1281 -.0590
-.0260 .0390
.0744 .1342
.1729 .2713
.2696 .3718
.3679 .4680
.4640 .5749
6758 .1304
-0.2773 -0.2613
-.0292 .0307
.0707 .1246
.1705 .2308
.2638 .3237
.3638 .4648
.4607 .5737
.5557 .6628
6558 7706
.8678 .9156
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Figure 1.- Boattailed cone-cylinder nacelle model.
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Boattail ud, Ud
Circular-arc 0.80 8.00 and 16.00
Circular-arc 1.77 8.00
Circular-arc—conic 8.00 and 16.00
Contoured 8.00

All dimensions are nondimensionalized by

model maximum diameter (2.54 cm).
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.480 461 .950 272
.560 439

Figure 3.- Details of boattail geometries. All dimensions are nondimensionalized

by model maximum diameter (2.54 cm). ¢’
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L-74-8664
(a) Front view of typical L/dnl = 8.0 model.

Figure 4.- Typical model installed in Langley 16-foot transonic tunnel.
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1.-74-8663
(b) Side view of typical L/dy = 8.0 model.

Figure 4.- Continued.




1.-74-8704
(¢) Front view of typical L/dnl = 16.0 model.

Figure 4.- Concluded.
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Figure 5.~ Boattail pressure coefficient distributions for L/d, = 8.0, 1/d;, = 0.80 circular-arc
boattail at 0° angle of attack at various Mach numbers.
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